Choose the correct answer

(1) If C(-1, 6, -5) is the midpoint of \overline{AB} where A(k-2, -1, m+3) and B(2, n-7, -2), then $k + m + n = \dots$

d 5

(2) If $\overrightarrow{A} = (\frac{-1}{2}, \frac{3}{4}, \mathbf{k})$ is a unit vector then $\mathbf{k} = \dots$

(a) $\pm \frac{3}{4}$

b $\pm \frac{\sqrt{3}}{4}$ **c** $\pm \frac{\sqrt{2}}{4}$

d $\pm \frac{\sqrt{5}}{4}$

(3) If A(-1, 4, k), B(2, 2, 1) and the length of \overline{AB} is $\sqrt{77}$ then one of the values of k is

(a) 2

b4

© 6

d 9

(4) The equation of the sphere whose center is (2, -3, 1) and the length of its radius equals $5\sqrt{2}$ is.....

(a) $(x+2)^2 + (y-3)^2 + (z+1)^2 = 5\sqrt{2}$ (b) $(x-2)^2 + (y+3)^2 + (z-1)^2 = 5\sqrt{2}$

(5) The equation of a sphere with center (2, -3, 4) and touches xy-plane is

(a) $(x-2)^2 + (y+3)^2 + (z-4)^2 = 4$ (b) $(x-2)^2 + (y+3)^2 + (z-4)^2 = 9$ (c) $(x-2)^2 + (y+3)^2 + (z-4)^2 = 16$ (d) $(x+2)^2 + (y-3)^2 + (z+4)^2 = 16$

(6) If $3x^2 + 3y^2 + 3z^2 + 18x - 12y + 30z - 24 = 0$ is the equation of a sphere its center is M then M is

a (3, -2, 5)

(b) (-3, 2, -5) (c) (9, -6, 15) (d) (-9, 6, -15)

(7) If the length of the diameter of the sphere $x^2 + y^2 + z^2 - 4kx + 4y - 8z + 2k = 0$ equals $4\sqrt{5}$ where $k \in \mathbb{R}^+$ then $k = \dots$

(a) 2

(b) $\frac{1}{2}$

(c) $\frac{3}{2}$

d $\frac{2}{3}$

(8) If the point (-2, 4, m) lies on the Sphere $(x+2)^2 + (y-1)^2 + (z-3)^2 = 25$ Then one of the values of m is

3rd year secondary

(a) 6

(b) 7

© 8

(d) 9

(9) If the X-axis cut the sphere whose center is (3, -4, 12) and its radius length 13cm at the two points A and B then AB length equals

(a) 3

(b) 12

d) 6

(10) If ABC is a triangle where A(1, 2, 3), B(0, 1, 2) and C(2, 1, 0), then the length of the median drawn from A equalslength unit

(a) $\sqrt{5}$

(b) $2\sqrt{5}$

(d)10

 $(11)\overline{AB}$ is a diameter in the sphere $(x-5)^2 + (y+2)^2 + (z-1)^2 = 25$ and where A(8,-1,2) then the coordinates of **B** is.....

(a) (2, -3, 1) (b) (10, -4, 5) (c) (2, -3, 0) (d) (10, 3, 6)

(12) If $\vec{A} = (-1, 4, 2)$, $\vec{B} = (2, 2, 1)$ then the component of \vec{A} in direction of \vec{B} is....

(a) $\frac{8}{3}$

© $\frac{1}{3}$

(d) 8

(13) If $\overrightarrow{A} = (1, -1, 2)$, $\overrightarrow{B} = (0, 2, -3)$ and $\overrightarrow{C} = (-2, 1, 0)$ then $||3\overrightarrow{A} - \overrightarrow{B} + \overrightarrow{C}|| = \dots$

(b) $8\sqrt{3}$

© 12

(d) $7\sqrt{2}$

(14) The length of the perpendicular from the point (-2, -3, 1) to X-axis =

(a) 2

ⓑ $\sqrt{13}$

(c) $\sqrt{10}$

(d) 5

(15) If $\vec{A} = (-7, 3, 10)$ and $\vec{B} = (-4, -1, -2)$ then the unit vector in direction of \overline{AB} is.....

(a) $(\frac{3}{13}, \frac{4}{13}, \frac{12}{13})$ (b) $(\frac{3}{13}, \frac{-4}{13}, \frac{-12}{13})$ (c) $(\frac{-3}{13}, \frac{4}{13}, \frac{12}{13})$ (d) $(\frac{-3}{13}, \frac{-4}{13}, \frac{-12}{13})$

(16) If $\overrightarrow{A} = (1, 2, -4)$, $\overrightarrow{B} = (1, 1, k-1)$ where $k \in \mathbb{Z}^+$ and $||\overrightarrow{A} + \overrightarrow{B}|| = 7$, then the value of *k* is

(a) 10

(b) 8

© 11

(d) 12

(17) If $\vec{A} = 2\hat{i} + 3\hat{j} + m\hat{k}$, $\vec{B} = -6\hat{i} - 4\hat{j} + 4\hat{k}$ and $\vec{A} \perp \vec{B}$ then $m = \dots$

(a) 4

(c) 8

(d) 10

3rd year secondary

(18) If $\vec{A} = (2\cos\theta, \log x, \sin\theta)$, $\vec{B} = (\cos\theta, \log 27, 2\sin\theta)$ and $\vec{A} \cdot \vec{B} = 11$ then the

value of $x = \dots$ (a) 25

(b) 125

 \bigcirc 625

d 5

(19) If $\overrightarrow{A} = (4, k, 6)$, $\overrightarrow{B} = (2, 2, m)$ and $\overrightarrow{A} / / \overrightarrow{B}$ then $k + m = \dots$

(a) 1

(b) 2

© -1

d 7

(20) If θ is the measure of the included angle between $\overline{A} = (-2, -6, 1)$ and

 $\overline{B} = (2, 6, -1)$

then $\theta = \dots$

(a) zero

(b) 60°

© 120°

d 180°

(21) ABC is an equilateral triangle with side length 8 cm then $\overrightarrow{BA} \cdot \overrightarrow{CB} =$

(a) $-32\sqrt{3}$

(b) -32

(c) $32\sqrt{3}$

(d) 32

(22) In the opposite figure ABCDA'B'C'D' is a cube of side length 2 units, then $\overline{AB'} \cdot \overline{BD} = \dots$

$$\frac{1}{2}$$

(23) In the opposite figure, the value of k =

(a) 3

(C) 4

(24) If the two straight lines: $L_1: \vec{r} = (2,3,-4) + k(2,3,a)$, $L_2: \frac{x-5}{b} = \frac{y+4}{6} = \frac{z-4}{2}$ are parallel then $a + b = \dots$

(a) 4

© 8

(d) 5

(25) The direction cosines of the vector $\vec{A} = (-2, 1, 2)$ are

- (-2, 1, 2)
- **b** $(\frac{-2}{3}, \frac{1}{3}, \frac{2}{3})$ **c** $(\frac{-5}{3}, 5, \frac{5}{3})$ **d** (-1, 1, 1)

3rd year secondary

(26) A straight line makes an angle of measure 60° with Y-axis and 60° with Z-axis then it makes an angle of measure with X-axis.

(a) 30°

(b) 45°

(c) 60°

(d) 75°

(27) If $\overrightarrow{AB} = -3\hat{i} + 3\hat{j} + 7\hat{k}$, $\overrightarrow{BC} = \hat{j} + 5\hat{k}$ then $||\overrightarrow{AC}|| = \dots$

(a) 9

b 10

© 13

(d) 14

(28) If $\overrightarrow{A} = (1, -1, 2)$, $\overrightarrow{B} = (3, -2, 0)$, $\overrightarrow{C} = (0, 2, 4)$ then $\overrightarrow{A} \cdot \overrightarrow{B} \times \overrightarrow{C} = \dots$

(a) 10

(b) 11

© 12

(d) 13

(29) If $||\overrightarrow{A}|| = 4$, $||\overrightarrow{B}|| = 3$, $||\overrightarrow{C}|| = 12$ and \overrightarrow{A} , $|\overrightarrow{B}|$, $|\overrightarrow{C}||$ are mutually perpendicular then $||\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}|| = \dots$

(a) 10

(b) 11

© 12

d 13

(30) ABCD is a parallelogram in which $\overrightarrow{AC} = (2, 2, -1)$, $\overrightarrow{BD} = (-1, 2, -3)$ then the surface area of the parallelogram equals cm²

(a) 6

(b) $7\sqrt{2}$

© $\sqrt{101}$

d $\frac{1}{2}\sqrt{101}$

(31) If $L_1: \frac{x+2}{-1} = \frac{y+3}{3} = \frac{z+5}{2}$ is perpendicular to the line $L_2: \frac{x}{2} = \frac{y-5}{k} = \frac{z-6}{m}$ then 3k + 2m =

(a) ₋₁

 \bigcirc 2

(32) The measure of the angle between the two straight lines $L_1: 2x = 3$ y = -zand $L_2: 6x = -y = -4z$ is

(a) 45°

© 90°

(d) 180°

(33) The equation of the plane passing through the point (1, 2, 3) and parallel to each of X and Y axis is

(a) x + y = 3

(b) z = 3 (c) x = 1

 $\overrightarrow{\mathbf{d}}$ $\mathbf{v}=2$

(34) If $\overrightarrow{A} = (1, -2, 1)$, $\overrightarrow{B} = (k, -5, 3)$ and $\overrightarrow{C} = (5, -9, 4)$ are coplaner, then $k = \dots$

(a) 2

 \bigcirc -2

(c) 3

(d) -3

3rd year secondary

(35) The angle between the straight line $L_2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{-2}$ and the plane

x + y + 4 = 0 is

(a) 0°

- (b) 45°
- (c) 30°

(d) 90°

(36) If the two planes 3x - y + 2z + 3 = 0 and kx - 4y + z - 5 = 0 are perpendicular then the value of k = ...

(a) 2

(d) -3

(37) If the straight line x = 3y = az is parallel to the plane x + 3y + 2z + 4 = 0 then the value of $a = \dots$

(a) 3

(d) -1

(38) The measure of the angle between the two planes $P_1: x-z+1=0$ and $P_2: 2x - 2y - z = 0$ equals

(a) 30°

- **b** 45°

(d) 60°

(39) The length of the perpendicular from the point (3, 0, -5) to the Plane

 $2x + \sqrt{5}y + 4z - 6 = 0$ equalslength unit

(a) 4

 \bigcirc 6

(d) 7

(40) If the intercepted parts from the coordinate axes by the plane x + 5y - 6z = 30are \mathbf{a} , \mathbf{b} and \mathbf{c} then $\mathbf{a} + \mathbf{b} + \mathbf{c} = \dots$

(a) 0

 \bigcirc 31

(d) 41

(41) The equation of the plane passing through point (1, -2, 5) and the vector (2, 1, 3) is perpendicular to it is

(a) 2x + y + 3z = 1

(b) 2x + v + 3z = 15

© x - 2y + 5z = 15

d x + y + z = 4

(42) If $\overrightarrow{A} \perp \overrightarrow{B}$, $\overrightarrow{A} \perp \overrightarrow{C}$ where $\overrightarrow{B} = (2, 3, 2)$, $\overrightarrow{C} = (1, 2, 1)$ and $||\overrightarrow{A}|| = 4\sqrt{2}$ then $\overline{A} = \dots$

- (a) (2,3,1)
- b (-4,0,4) c (4,4,0) d (0,-4,4)

(43) If three adjacent sides of a parallelepiped are represented by the vectors

 $\vec{A} = (2, 1, 3)$, $\vec{B} = (-1, 3, 2)$ and $\vec{C} = (1, 1, -2)$ then its volume is

(a) 30

(b) 28

- © 14
- **d**) 56
- (44) In the opposite figure, a right circular cone, the perimeter of its base 12π cm, C is the of \overline{AM} then $\overline{BC} \cdot \overline{CO} = \dots$

(b) 36

(45) In the opposite figure, If $\| \overrightarrow{BC} \| = \sqrt{6}$, $\| \overrightarrow{AC} \| = \sqrt{2}$ and $\overrightarrow{BA} = (-1, 0, 1)$ then

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \dots$$

(a) 1

b 2

(c) 3

(d) 4

(46) The point lying on the straight line $\overline{r} = (2, -1, 3) + k(1, 2, -1)$ is

(b)
$$(0, 2, -2)$$
 (c) $(3, 1, 2)$ (d) $(4, -3, 0)$

$$\bigcirc$$
 (4, -3, 0)

(47) The point which lying on the p; ane $\vec{r} = (-1, 0, 2) + t_1(0, 0, 1) + t_2(1, 0, -1)$ is ...

©
$$(3,1,2)$$

$$\textcircled{d}(1,0,1)$$

(48) The equation of x-axis is the space is

(a)
$$x = 0$$
, $y = 0$

b
$$x = 0$$
 , $z = 0$ **c** $x = 0$

$$\bigcirc$$
 $x=0$

d
$$y = 0, z = 0$$

Producing answers questions

- (1) If A(4, 8, 12), B(2, 4, 6), C(3, 5, 4) and D(5, 8, 5) then prove that the points A, B, C and D are coplaner.
- (2) If the three vectors $\vec{A} = \hat{i} \hat{j} + \hat{k}$, $\vec{B} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{C} = \hat{i} + m\hat{j} 3\hat{k}$ are coplaner then find the value of k.
- (3) Find the all different forms of the equation of the straight line passing through the point (2, -1, 2) and its direction vector is (-3, 4, 1) then find the point of intersection of this line with the XY-plane.
- (4) Find the all different forms of the equation of the straight line passing through the two points (2, 2, -3) and (1, -1, 0). Does the point (1, 3, 2) belongs to this straight line?
- (5) Find the all different forms of the equation of the straight line passes through point (3, 2, 5) and makes equal angles with the +ve directions of the coordinated axes.
- (6) Find the equation of the straight line passing through the Origen point and intersects the straight line $L_1: \vec{r} = (3, 1, 4) + k(2, 1, 3)$ orthogonally.
- (7) Prove that the two straight lines $\begin{cases} x = 2 + k \\ y = 2 + 2k \\ z = -4 k \end{cases}$, $\frac{x 1}{2} = \frac{y + 5}{4} = \frac{z}{-2}$ are coplanar.
- (8) Prove that the two straight lines L_1 and L_2 are intersected orthogonally where $L_1: \vec{r} = (3, -3, 5) + t_1(0, -5, 5)$ and $L_2: \vec{r} = (-2, 3, 1) + t_2(5, -1, -1)$.
- (9) Prove that the two straight lines $\begin{cases} L_1 : \vec{r} = (3, -1, 2) + k_1(4, 1, 3) \\ L_2 : \vec{r} = (0, 4, -1) + k_2(1, -1, 2) \end{cases}$ are skew.
- (10) Find the perpendicular distance from the point (2, 1, -4) to the straight line $L_1: \vec{r} = (1, -1, 2) + k(2, 3, -2)$.

3rd year secondary

(11) Find the equation of the plane passing through the point (1, -2, 4) and Perpendicular to the straight line passing through the two points (3, 0, -3) and (-1, -3, 2).

(12) Find all the different forms of the equation of the plane passing through the point A(-2, 3, 4) and parallel to each of the two vectors $\overrightarrow{u_1} = (1, -2, 1)$ and $\overrightarrow{u_2} = (3, 2, 4)$.

- (13) Find all the different forms of the equation of the plane passing through the point A(1, -1, 1) and Perpendicular to each of the planes x y + z 1 = 0 and 2x + y + z + 1 = 0
- (14) Find all the different forms of the equation of the plane passing through the three points A(3, 1, 0), B(0, 7, 2) and C(4, 1, 5).
- (15) If the plane 3x + 2y + 4z 12 = 0 intersects the coordinate axes x, y, z at the points A, B and C respectively, find the area of the triangle ABC.
- (16) Find the equation of the plane which contains the straight line $\frac{x+1}{2} = y = \frac{z-4}{-3}$ and passes through the Origen point.
- (17) Prove that the two straight lines 2x = 3y = 4z and 3x = 2y = 5z are intersecting, then find the equation of the plane containing them.
- (18) Prove that the two straight lines $\begin{cases} x = 4 2t_1 \\ y = 3 + t_1 \\ z = 1 + 3t_1 \end{cases}$ and $\begin{cases} x = 5 + 2t_2 \\ y = 1 t_2 \end{cases}$ are parallel then $z = 1 3t_2$ find the equation of the plane containing them.

(19) If $P_1: 2x - y - z + 7 = 0$, $P_2: x - 5y + 3z = 0$ and $L: \frac{x - 1}{2} = -y - 3 = \frac{z}{5}$ then find the measuer between: ⓐ P_1 and P_2 ⓑ P_1 and P_2

3rd year secondary

(20) Prove that the two planes 3x + 6y + 6z = 4, x + 2y + 2z = 1 are parallel, then find the distance between them.

- (21) Find the projection of the point A(0, 9, 6) on the straight line \overrightarrow{BC} where B(1, 2, 3) and C(7, -2, 5).
- (22) Find the point of intersection of the line x = 2 + 3k, y = -4k, z = 5 + k and the plane 4x + 5y 2z = 18 then find the measure of the angle between them.
- (23) Find the equation of the plane which containing the straight line $\vec{r_1} = (1, 2, 4) + k_1(4, 1, 11)$ and perpendicular to $\vec{r_2} = (4, 15, 8) + k_2(2, 3, -1)$
- (24)By using the opposite figure: find the equation of the inclined plane

- (25) Find the equation of the line of intersection of the two planes x + y + z = 1 and x + z = 0
- (26) Find the equation of the plane which contains the straight line L_1 and parallel to the straight line L_2 where $\begin{cases} L_1 : \vec{r} = (0, 3, -5) + k_1(6, -2, -1) \\ L_2 : \vec{r} = (1, 7, -4) + k_2(1, -3, 3) \end{cases}$
- (27) Find the equation of the straight line which passes through the point (2,4,1) and perpendicular to the plane 3x y + 5z = 77
- (28) If the point on the plane P which is closest to the point (1, 0, -1) where P: 2x + y 2z = 1
- (29) Find the equation of the sphere whose center is (-2, 1, -1) and touches the plane 2x + 2y + z = 3

3rd year secondary

(30) Find the equation of the plane passing through the point (1, -1, 1) and Perpendicular to each of the two planes x - y + z = 1, 2x + y + z + 1 = 07x + y + 2z = 6, 3x + 5y - 6z = 8

Multiple choice answers

(1)	(b)	(2)	(b)	(3)	d	(4)	C	(5)	©	(6)	b
(7)	(b)	(8)	(b)	(9)	d	(10)	a	(11)	©	(12)	<u>a</u>
(13)	a	(14)	©	(15)	b	(16)	©	(17)	b	(18)	b
(19)	d	(20)	(d)	(21)	b	(22)	C	(23)	a	(24)	d
(25)	b	(26)	(b)	(27)	C	(28)	d	(29)	d	(30)	d
(31)	\odot	(32)	(O)	(33)	b	(34)	a	(35)	b	(36)	b
(37)	d	(38)	(b)	(39)	a	(40)	C	(41)	b	(42)	b
(43)	b	(44)	©	(45)	©	(46)	C	(47)	d	(48)	d