Which of the following is the area of the triangle whose vertices are the points which represent the cubic roots of unity on Argand's plane? #### The number of ways can a person in a sport club participates in 3 games at least from the set { football , hand ball , volley ball , basket ball } equals In the expansion of $\left(x^2 - \frac{1}{x}\right)^{15}$ according to the descending powers of x , the value of the term free of x equals #### If the two planes: 18 x + 15 y - 6 z + 1 = 0, a x + b y + 2 z + 1 = 0 are parallel, then $a b = \dots$ - 30 - - 30 - 90 - - 90 If $$\mathbf{A} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} then (A^2)^{-1} = \dots$$ $$\bullet \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$ $$\bullet \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$ $$\bullet \begin{pmatrix} -\cos\theta & -\sin\theta \\ -\sin\theta & -\cos\theta \end{pmatrix}$$ $$\begin{pmatrix} \cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta \end{pmatrix}$$ If the straight line $\frac{x-2}{3} = \frac{y+1}{-4} = \frac{z+3}{5}$ makes with the planes x y, y z, z x angles of measures L, M, N respectively, then $\sin^2 L + \sin^2 M + \sin^2 N = \dots$ - 1 - 2 - √3 - $\frac{3}{2}$ If 1 , ω , ω^2 are the cubic roots of unity , then $\left(\frac{a}{\omega} - \frac{a}{\omega^2} + \frac{3a}{\omega^4} - \frac{3a}{\omega^5}\right)^2 = \dots$ In the expansion of $\left(a x^2 - \frac{b}{x}\right)^{12}$ according to the descending powers of x. ### *T*₇ is - The term containing x^6 - The term free of x The code of a lock consists of 3 different digits number chosen from the digits { 1 , 2 , 3 , , 9 } . By how many ways we can form a code contains the digit 6? If the coefficient of the ninth term in the expansion of $\left(a\sqrt{x} - \frac{1}{a\sqrt{x}}\right)^{12}$ according to the desconding power of X equals 7920, then a = $$\begin{vmatrix} x & y & y \\ y & x & y \\ y & y & x \end{vmatrix} = (x + 2y) \times \dots$$ - $\begin{array}{c|ccccc} & 1 & y & y \\ 0 & x-y & 0 \\ 0 & 0 & x-y \end{array}$ - $\begin{array}{c|cccc} 1 & y & y \\ 0 & x+y & 0 \\ 0 & 0 & x+y \end{array}$ - $\begin{vmatrix} 1 & y & y \\ 0 & x-y & 2y \\ 0 & 0 & x+y \end{vmatrix}$ TON AND TEGS If A (3, -4,0), B (15,0,2), C (0,-8,4) are three points in the space and they are the vertices of \triangle ABC ,then the distance between the centroid point of the \triangle ABC and the plane X Z is #### The possible values of K which make the distance between the two points A (2 , K , 3) , B (-4 , 4 , 2) equals $\sqrt{62}$ are If the shortest distance between the point A (3, 5, 1) and the surface of the sphere whose centre M (1, 2, -5) is 2 length unit, then the radius of the sphere =length unit. #### If the measure of the angle between the two planes : \vec{r} . (3, -4, 2) = 7 and 3x + 4y - mz = 12 is 90°, then m = • $$\frac{-3}{2}$$ • $$\frac{-25}{2}$$ • $$\frac{3}{2}$$ If $Z_1 = 3 (\cos 300^{\circ} + i \sin 300^{\circ})$, $Z_2 = 2 (\sin 240^{\circ} + i \cos 240^{\circ})$, then which of the following represents the exponential form of $\mathbf{Z}_1\,\mathbf{Z}_2$? If $$2^{n+1}C_r = {n+1 \choose r}$$, $\frac{{n \choose r+1}}{{n \choose r}} = \frac{5}{3}$, then ${}^nC_r + {}^nP_r = \dots$ - 63 - 33 - 60 - 36 If \vec{A} , \vec{B} are two vectors where $\|\vec{A}\| = 5$, and the component of vector \vec{B} in the direction of vector \vec{A} is 3 , then \vec{A} . \vec{B} = If $a e^{2\theta i} + b e^{-2\theta i} = 5 \cos 2\theta - i \sin 2\theta$ where a, b are two positive real numbers, $\theta \in \] \ 0 \ , \frac{\pi}{2} \ [$, $i^2 = -1$, then: $a \ b = \dots$ If the greatest coefficient in the expansion of $(a + x)^{20}$ is the coefficient of T_{11} , then a \in where a \in R^+ - [10,11] - $\bullet \left[\frac{-11}{10} \, , \frac{10}{11} \right]$ - $\bullet \left[\frac{9}{11}, \frac{10}{11} \right]$ ### If \mathbf{A}^{\star} is the augmented matrix for the linear system of equations 3 x + 2y - z = 4, x + y - z = 3, x = 2 z, then • $$Rk(A^*) < 3$$ • 1 < $$Rk(A^*) \le 2$$ • $$1 \leq Rk(A^*) < 3$$ If \vec{A} , \vec{B} , \vec{C} represent three adjacent edges in a parallelepiped, $\|\vec{A}\| = 2$ and the direction angles of vector \vec{A} are (135°, 60°, 120°), $\vec{B} = (1, \sqrt{2}, 0), \vec{C} = (\sqrt{2}, 3, 5),$ then the volume of the parallelepiped = cubic unit. - 16 - 6√2 - 11 - $16\sqrt{2}$ If the plane 2x - y + 2z = 6 touches the surface of the sphere whose equation $x^2 + y^2 + z^2 - 4x - 2y + 6z + 5 = 0$, then the equation of the straight line which passing through the center of the sphere and the point of tangency is If the plane bc x + ac y + ab z = abc intersects the coordinate axes x, y and z at the points K, N and M respectively and the plane bc x + ac y - ab z = - abc intersects the coordinate axes x, y and z at the points K^{\prime} , N^{\prime} and M respectively, then the pyramid $MKNK^{\prime}N^{\prime}$ is