(دمج . ح)

ARAB REPUBLIC OF EGYPT

(۲۰۰۷) E / ۳ / (۲۰۰۷)

Ministry of Education and Technical Education General Secondary Education Certificate Examination – First Session 2022 Third Year Secondary

Physics		Time: 3 hours
(الإجابة في نفس كراسة الأسئلة)	(الدور الأول ٢٠٢٢)	لفيزياء بالإنجليزية

(الأسئلة في ثلاثة عشر صفحة)

Answer	the	followin	g questions:

Group one: Questions from (1-9)

1) Answer (A) or (B):

(A) Write down one function for:

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

B) Write down one function for:

The transistor.

.....

2) Answer (A) or (B):

(A) Choose the correct answer:

- 1) Step down transformer of efficiency 80%
- 2) Step up transformer of efficiency 80%
- 3) Ideal step down transformer.

(بقية الأسئلة في الصفحة الثانية)

(B) Choose the correct answer:

If the induced e.m.f. in dynamo's coil when the perpendicular to the plan of the coilmakes an angle 45° to the magnetic field lines equals approximately 141.4 volts then the induced e.m.f. when the perpendicular to the plan of the coil makes an angle 90° to the magnetic field lines is

1) Zero

2) 200 Volts

3) 282.8 Volts

3) Answer (A) or (B):

(A) Choose the correct answer:

If the self-induction coefficient of a coil equals 0.2 H., so that the rate of change in the intensity of the current passes through the coil and causes electromotive force of 8 V. to be induced in the coil is.....

1) 30 A/s.

2) 40 A/s.

3) 50 A/s.

(B) Choose the correct answer:

If the rate of change in the intensity of the electric current passing through a coil equals 20 A/s., An electromotive force of 5 Volts is induced in the neighboring coil so that the mutual induction coefficient between the two coils is

1) 0.15H

2) 0.25H

3) 0.35H

4) Choose the correct answer:

On increasing the intensity of the current passing through the circuit in Ohm's experiment, so that the reading of the voltmeter

1) Decreases.

2) Increases.

3) Remains constant.

(بقية الأسئلة في الصفحة الثالثة)

5) Choose the correct a	answer:	
A light beam the freque	ency of its photons 6 X 10 ¹⁴ Hz	z falls on a metallic surface
as a result of that the e	electrons of the surface of the r	netal are released without
gaining any kinetic en	ergy, if the frequency of the in	ncident photons is increased
to the double, then the	work function of that metal w	vill
ŕ	able. 2) decrease to the half.	
6) What are the results	,	,
	ectrum that is produced from a	a glowing object of high
	cold gas and receiving the res	
otograph plate		•
7) A rectangular coil has	s a number of turns 500 turns is	ts dimensions 20 cm, 50
cm. carrying electric cu	urrent of intensity 0.4 A. and re	evolves in a uniform agnetic
flux of density 0.3 T.,	Calculate the magnetic dipole	moment of this coil.
8) Choose the correct a	answer:	
In He-Ne laser, the type of	of the energy which is used to ex	xcite neon atoms is
1) light energy	2) electric energy	3) thermal energy
9) What are the results	s based on? :	
Moving a magnetic pole	e near to and away from the so	ft iron core of a spiral coil
connected is series with	h a source of direct current and	d ammeter (concerning to
the reading of the amm	neter)	
	ة الأسئلة في الصفحة الرابعة)	(بقیا

Group	two:	Questions	from	(10 - 1)	8)

10) Answer (A) or (B):

(A) Write down the mathematical relation that represents Faraday's law for
electromagnetic induction in a coil.
•••••••••••••••••••••••••••••••••••••••
(B) Write down the mathematical relation that is used to find the average induced
e.m.f. in the dynamo's coil through half cycle.

11) Answer (A) or (B):

(A) Choose the correct answer

The magnetic torque acting on the electric motor coil is maximum when the angle between the plane of the coil and the magnetic field lines equals

1) 90°

2) 45°

3) Zero°

(B) Choose the correct answer

- 1) remains constant
- 2) increases to (3F)
- 3) decreases to (1/3 F)

(بقية الأسئلة في الصفحة الخامسة)

10) Answer	/ A >			
	I Angwar I	Α.	nor	к	١.
14			<i>,</i> vi (U	,

12) Answer (A) or (B):
(A) Give reason for:
The average induced e.m.f. in the dynamo's coil during one complete cycle
equals zero.
•••••••••••••••••••••••••••••••••••••••
(B) Give reason for :
The exist of a negative sign in the mathematical formula that represents
Faraday's Law to calculate the induced e.m.f.
······································
13) What is meant by the population inversion in Laser?
••••••
14) What are the results based on falling of a light beam on the surface of a
metal where the frequency of the photons of the light beam is greater than the
critical frequency of the metal?
15) Choose the correct answer:
To avoid the electric noise, we use at the transmitter
1) Analog digital converters.
2) Digital analog converters.
3) Ideal electric transformer. (بقية الأسئلة في الصفحة السادسة)

16) If the value of the resistance needed to make the pointer of the ohmmeter
deflects to quarter of the scale is 18000Ω , Calculate the internal resistance of
the device.
17) Mention the reason for replacing the two slip rings connected to the coil of
the dynamo by A hollow cylinder split into two insulated halves.
18) A rectangular coil consists of 200 turns, the face area of each of them 0.2 m ² .
A magnetic flux of density 0.3 T penetrate it, If the magnetic flux density is
increased by 0.2 T in a time of 0.01 s. Calculate the electromotive force that
induced in the coil.
ريقية الأسائلة في المساقية المساقية

The third group questions from (19 - 27)

19) Answer (A) or (B):

(A) Choose the correct answer:

In Ballmer's series, on returning two electrons one of them from the fourth energy level that produces a photon of wave length (λ_1), frequency (v_1) and energy (E₁). The another electron from the fifth energy level producing a photon of wave length (λ_2), (ν_2) and energy (E_2), then

1)
$$\lambda_1 > \lambda_2$$

2)
$$v_1 > v_2$$

3)
$$E_1 > E_2$$

(B) Choose the correct answer:

The intensity of X-rays that produced from Coolidge tube increases on

- 1) Increasing the potential difference between the filament and the target.
- 2) Increasing the potential difference applied on the filament.
- 3) Increasing the atomic number of the target material.

20) Answer (A) or (B):

(A) Choose the correct answer:

The measuring instruments in which the reading depends on a pointer are called

- 1) Analog instruments
- 2) Digital instruments
- 3) Analog digital instruments

(B) Choose the correct answer:

The ratio between the resistance of the current divider in the ammeter to the total resistance of the same ammeter one

- 1) greater than
- 2) less than

3) equals to

(بقية الأسئلة في الصفحة الثامنة)

(دمج . ح)	_^_	(۲۰۰۷) / ۳/ E /۳ أول / تابع
21) Answer (A) or (B)	<u>.</u>	
(A) What is the role of	the hollow cylinder that is s	splitted into two isolated
halves and connected t	to the coil of the electric mo	tor?
(B) How can you expla	<u>in ?</u>	
The increase in the temp	perature of a metallic core of	f a coil connected to
alternating current sour	rce.	
22) Give reason for:		
The current of the base i	n the transistor is very smal	1.
23) Choose the correct	answer:	
If the resistance of the co	oil of galvanometer equals (R) then the value of the
current divider resistor	needed to decrease the sens	sitivity of the galvanometer to
quarter equal		
1) R	2) R/2	3) R/3
24) Choose the correct	answer:	
The energy of the production	ced photon from the spontar	neous emission is
the energy of the photo	on that is used in the excitation	on of the atom
1) more than	2) less than	3) equal to
	أسئلة في الصفحة التاسعة)	(بقية الأ

-

(دمج . ح)	_9_	(۲۰۰۷) / ۳/ E /۳ أول / تابع
25) Choose the correct	answer:	
From the devices in whi	ch eddy currents are u	sed
1) the electric transfor	rmer	
2) the induction furna	ices	
3) the dynamo		
26) Choose the correct	answer:	
On connecting two resis	tors ($4R$) and (R) in	parallel to a source of direct
current so that the pow	er dissipated in the res	sistor (4R) is the
power dissipated in the	resistor (R).	
1) 4 times	2) half	3) quarter
27) Choose the correct	answer:	
turns and connected to	the same battery the m	he form of a coil consists of (9) nagnetic flux density at the center $\frac{B_1}{B_2}$ equals
Fourth group (28 -36)		1
28) Answer (A) or (B):		
(A) Write down the sci	entific term for the fo	ollowing:
"The opposition of the c	conductor to the flow o	of the electric current through it".
		••••••
		•••••
(B) Write down the scie	entific term for the fo	llowing:
The reciprocal of the resi	istivity.	
		•••••
	فى الصفحة العاشرة)	(بقية الأسئلة

-4

(۲۰۰۷) / ۳/ <u>E</u> /۳ (۲۰۰۷)
llvanometer? (One point only)
e voltmeter? (One point only)
coil can be determined by
3) Fleming's right hand rule
ric motor when its plan is otation of the coil and its plan
3) remains constant
atom in visible light zone is
3) Balmer's series
ire moves perpendicular to

۵		
٩	۵	

([[[[[[[[[[[[[[[[[[[_ 1 • _	۱۰۰۷) / ۴/ ۱۴/ اول / نابع
29) Answer (A) o	<u>r (B)</u>	
		e galvanometer? (One point only)
(B) What is the re	-	n the voltmeter? (One point only
30) Answer (A) o	<u>r (B):</u>	
(A) Choose the co	orrect answer :	
The direction of the	ne induced e.m.f. in the dynamo	o's coil can be determined by
using	•••••	
1) Lenz's rule	2) Amber's right hand rule	3) Fleming's right hand rule
(B) Choose the co	orrect answer :	
The magnetic dipo	ole moment of the coil of the ele	ectric motor when its plan is
parallel to the ma	ngnetic field after th	ne rotation of the coil and its plan
becomes perpend	licular to the magnetic field.	
1) decreases	2) increases	3) remains constant
31) Choose the co	errect answer :	
the spectral line se	ries produced from the hydroge	en atom in visible light zone is
called		
1) Pfund's series	2) Paschen's series	3) Balmer's series
32) Choose the co	rrect answer:	
The magnitude of	the induced current in a straigh	t wire moves normandicular to

The magnitude of the induced current in a straight w the direction of magnetic field lines depends on

- 1) the velocity of the moving wire
- 2) the direction of the magnetic field lines
- 3) the direction of the motion of the wire

(بقية الأسئلة في الصفحة الحادية عشر)

33) Write down the scientific term:
The attractive force that prevents the electrons to escape from the surface of the
metals.
······································
34) Choose the correct answer:
Two parallel wires the intensity of the current passes in each of them is (I) in two
opposite directions, if the intensity of the magnetic flux produced from one of the
two wires at the mid points between the two wires equals (B) then the total
magnetic flux density at the mid-point between the two wires equals
1) B 2) 2B 3) Zero
35) If the magnitude of the induced e.m.f. in the dynamo's coil when its plan
makes an angle 60° with the magnetic field lines equals 100 Volts. Find the
magnitude of the average induced e.m.f. in the coil during quarter cycle from the
perpendicular position.
······································
36) If the concentration of the free electrons or holes in a pure silicon crystal is
10^{10} cm ⁻³ , if phosphor atoms is added to the crystal with a concentration 10^{12} cm ⁻³
Calculate the concentration of holes in this case.

(بقية الأسئلة في الصفحة الثانية عشر)

(دمج . ح)	-1 7-	(۲۰۰۷) / ۳/ E /۳ أول / تابع
Fifth group (37 – 45)		
37) Answer (A) or (B):		
(A) Define :		
The Tesla.		
••••		
(B) Define:		
The magnetic flux density at a	a point.	
	······	
38) Answer (A) or (B):		
(A) Write down the scientifi	c term for the following	7:
The spectrum that results due	to the transfer of the elec	ctron from the excited
levels to the lower energy le	vels.	
(B) Right down the name of		••••••
That is used to obtain pure spo		
•		
39) Answer (A) or (B):		••••••
(A) Choose the correct answ	er:	
Laser beam is used in three di		use the photons of laser
are		•
1) Highly monochromatic.	2) Highly coherent.	3) Highly intense.
(B) Choose the correct answ	, -	, C ,
The emission that responsible		
1) line emission.	-	3) spontaneous emission.
,	لأسئلة في الصفحة الثالثة ع	, <u>-</u>
()		·)

--4

(دمج . ح)	_1 ~_	(۲۰۰۷) / ۳/ E /۳ أول / تابع		
40) Choose the correct an	swer:			
The equivalent measuring u	unit for the Henry is			
1) Ω.s	2) V.s	3) Ω.C.		
41) Choose the correct an	swer:			
The digit in the decimal sys	stem that corresponding	g to $(11001)_2$ code in the binary		
System is	•••••			
1) 20	2) 25	3) 30		
42) Give reason for:				
The wave length associated	to the motion of the ele	ectron beam in the electron		
microscope decreases as the	he potential difference a	applied on it increases.		
	••••••••••			
43) Mention the reason:				
The wire that is carrying a control of the wire that is c	current and placed along	g the interior axis of solenoid		
carrying current doesn't af	fect by a magnetic force	e.		
44) Choose the correct ans				
•	, ,	ternal resistance 0.5 Ω .so that		
the percentage of the lost of		using to operate a lamp of		
resistance 2Ω is				
1) 15%	2) 20%	3) 25%		
45) How can you decrease t	the loss in the electric en	nergy of the transformer?		
(انتهت الأسئلة)				