Model test in Algebra and Trigonometry For the 1st secondary stage – First term 2018 / 2019 Merge students

Answer the following questions

First Question: Choose the correct answer from those given:

- (1) $i^6 = \dots$
 - (a) -1

(b) 1

- (c) 6
- - (a) {-1}

(b) {1}

- (c) Ø
- (3) The roots of the equation : x(x-3) = 0 are
 - (a) Real and different
- (b) equal

- (c) Not real
- (4) The function f: f(x) = x 2 is positive in the interval
 - (a)]2,∞[

(b)]-∞,2[

- (c)]-2,2[
- (5) If $tan \; heta = 1 \;$, such that $\; heta \;$ is the measure of an acute angle, then $\; heta =^{\circ}$
 - (a) 30

(b) 45

(c) 60

Second Question: Complete the following:

- (2) The angle of measure 88° lies in the quadrant.
- (3) The smallest positive measure for the angle of measure 60° equals°
- (4) The equation: (x + 5)(x 5) = 0 is of degree.
- (5) In \triangle ABC: if m ($\angle A$) = 60° , m ($\angle B$) = $\frac{\pi}{2}$, then m ($\angle C$) =°.

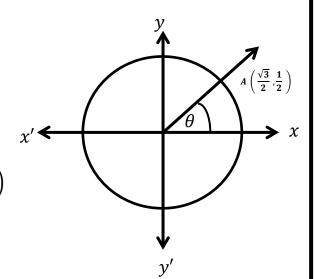
Third Question: Match from column A with the suitable from column B

Colum (A)

(1)	The solution set of the inequality: $x^2 - 1 < 0$ in R is	•
(2)	The roots of the equation: $x^2 - 2x + k = 0$ are equal when $k = \dots$	
(3)	The sum of the roots of the equation: $x^2 + 4x + 3 = 0$ equals	
(4)	The solution set of the inequality: $(x+2)(x-1) \le 0$ in R is	
(5)	$Sin 180^{\circ} + cos 180^{\circ} = \dots$	•

Column (B)

1
]-1,1[
-1
-4
[-2,1]


Fourth Question: Complete the steps in each of the following:

(1)
$$(3+i)(3-i) = 9 - \dots = \dots$$

- (2) The equation whose roots are 3 and 5 is : $x^2 (\dots x) x + \dots = 0$
- (3) The radian measure of the central angle which subtended an arc whose length is 8 cm in the circle whose radius is 4cm equals:

$$\theta^{rad} = \frac{m_{rad}}{m_{rad}} = m_{rad}$$

- (4) If $sin\ 10^\circ=cos\ heta$, $heta\in\]0^\circ$, $90^\circ[$,then $10\ +\ heta=......$ $^\circ$ \therefore heta=.....
- (5) The opposite figure represents the angle $\,\theta$ in its standard position such that its terminal side interests the unit circle at the point $A\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$, then : $tan\ \theta=\frac{1}{2}\div\dots==\dots$

End of Test

(Best wishes)