مخرجات التعلم وبعض الروابط ذات العلاقة في بنك المعرفة المصري مادة الفيزياء (physics) الصف الثالث الثانوي العام الدراسي :۲۰۲۲/۲۰۲۱

	Some sources in EKB			
Learning outcomes	Discovery	SS Britannica	Sy Britannica	
Chapter one	https:// lms.ekb.eg/search?que- ry=kirchhoff%20laws%20for%20elec-	https://lms.ekb.eg/playlists/ view/86b4ff3e-ccb5-4235-b655-		
Electric current- ohm's law and Kirchhoff's laws.	tric%20circuits&strict=false&popupUri =%2FResource%2F65757265-6b61-	43a2a2005c67/en/1		
1-Deduce the concept of (Electric current – Potential difference – electric resistance).	656b-6233-303030333030			
2-Discover the factors affecting on a resistance of	Kirchhoff's laws	Electric current		
a conductor	https://lms.ekb.eg/repository/re-source/9d025f38-81c0-44ff-a91c-	https://lms.ekb.eg/playlists/ view/86b4ff3e-ccb5-4235-b655-		
3-Deduce the resistivity and the conductivity of a conductor	a449342cb78e/en	43a2a2005c67/en/1		
4-Illustrate by drawing the way of the resistors	series connection	Electric current		
connection (series – parallel).	https://lms.ekb.eg/repository/re- source/9a1b46cf-640d-4bc2-b0bf-	https://lms.ekb.eg/playlists/view/ eff49ee7-8f6e-4171-a3b9-0db78e-		
5-Calculate the equivalent resistance of group of resistors.	56b3d811f269/en	ae402e/en/1		
6-Apply the ohm's law for closed circuit.	parallel connection	ohm's law		
7-Deduce the relation between the electromotive force and the potential difference between two poles of a battery.	https://lms.ekb.eg/repository/re- source/fdb18fe9-6bab-421f-b02d- b1717980dfde/en	https://lms.ekb.eg/playlists/ view/69dfc7d4-abe2-4182-9117- b5fbb3153924/en/1		
8-Illustrate the effect of the resistors connection	Electric circuit	ohm's law (Home work)		
on the electric current and potential difference through the circuit.		https://lms.ekb.eg/playlists/ view/2520d248-524a-48e2-9df9- 1d729fd57cb0/en/1		
9-Apply the kirchhoff's laws on the electric circuits				
		ohm>s law (Practical -Home work)		

		Some sources in EKB	
Learning outcomes	Discovery	S ★ Britannica	Š ✓ ✓ Britannica
		https://lms.ekb.eg/playlists/view/2520d248-524a-48e2-9df9-1d729fd57cb0/en/1	
		ohm's law (Practical -Home work)	
	https://lms.ekb.eg/repository/re- source/4924ad4b-7d96-444a-92c2- 6ab379e799b2/en	https://lms.ekb.eg/playlists/view/0346d07e-8197- 4c34-bf96-a94bb66611e1/en/1	
	Resistance	Solved examples	
	https://lms.ekb.eg/repository/resource/ aca4b1d5-fefa-45cb-ae72-aeadb033c51e/en	https://lms.ekb.eg/playlists/view/a0d6a5cf-2125- 4c57-bae1-3e52f5bc5e0a/en/1	
	Parallel lamps	Problems on resistors	

		Some sources in EKB	
Learning outcomes	Discovery	Sy Britannica	S Britannica
Chapter two	https://lms.ekb.eg/repository/re-source/844dc351-875a-4e86-af47-	https://lms.ekb.eg/playlists/ view/7a65b54b-4b77-47ce-813c-	https://lms.ekb.eg/playlists/view/ e4420b8f-a66a-4c42-a056-
Magnetic effect of the electric current.	a704d9595a48/en	22466310245f/en/1	67f5484482d6/en/1
1-Calculate the magnetic flux density of a straight wire carrying a current.			
2-Calculate the magnetic flux density of a	Electricity and magnetism part 2	Magnetic flux density	Magnetic flux density
circular loop carrying a current. 3-Calculate the magnetic flux density of a solenoid loop carrying a current.	https://lms.ekb.eg/repository/re- source/c3acdbb0-b23c-4ec3-8ca5- 7e14326e7f28/en	https://lms.ekb.eg/playlists/ view/a4ff55f0-e14a-4202-9cb6- 688add51009d/en/1	https://lms.ekb.eg/playlists/ view/00ecc841-0481-47eb-9bae- f5f3bfd00cd7/en/1
4-calculat the magnetic flux density at a point due to different conductors carrying electric current.	Electricity and magnetism part 1	Galvanometer 2	Galvanometer 1
5- Determine the direction of magnetic flux of	https://lms.ekb.eg/repository/ resource/64143430-0aa1-450e- 9909-81f1b0c09f09/en	https://lms.ekb.eg/playlists/view/ ec267c8f-4646-4108-a379-48be- ab295663/en/1	https://lms.ekb.eg/playlists/ view/fccc4a9a-7552-4fe9-ab66- 4476964dfe27/en/1
a straight wire, circular coil and solenoid carrying a current.	Electromagnet.	Galvanometer 4	Galvanometer 3
6- deduce the factors affecting the magnetic flux density at a point near a straight wire, circular coil and solenoid carrying a current.		https://lms.ekb.eg/playlists/ view/9d220475-76cb-4112-b012- 67d1d7d4128a/en/1	https://lms.ekb.eg/playlists/view/ a70c14d9-4bfb-4ba5-b836-602f12ef- 5b8e/en/1
7- deduce the factors affecting the magnetic force which acts on a straight wire placed in magnetic field.		DC ohmmeter and multi meter 2	DC ohmmeter and multi meter 2
8- deduce the mutual force between two straight wires carrying a current.			

		Some sources in EKB	
Learning outcomes	Discovery	S ✓ ✓ Britannica	S ✓ Britannica
		https://lms.ekb.eg/playlists/view/27446e71-7b07-469a-b915-5d795f3707c7/en/1	https://lms.ekb.eg/playlists/view/2517f351-d34d-4ffa-a2ba-d3dd33db4242/en/1
		Solved examples on a rectangular coil carrying electric current placed	Solved examples on a rectangular coil carrying electric current
9-Apply the fleming's left rule.		in a magnetic field.	placed in a magnetic field.
10- calculate the torque acting on a rectangular coil carrying electric current		https://lms.ekb.eg/playlists/view/77a43145- 42f6-494f-875e-f9b61b2b683e/en/1	https://lms.ekb.eg/playlists/view/6df931ea- b313-40a8-9c94-9b04130df83c/en/1
placed in a magnetic field. 11- Illustrate the structure, the idea of		Ampere>s circular law	the magnetic force which acts on a straightwireplacedinmagnetic field.
work for moving coil galvanometer and calculate its sensitivity.		https://lms.ekb.eg/playlists/view/0d1333fa- 6c4a-4f02-97f1-7752d2e98459/en/1	
12-deduce the way to convert the galvanometer into ammeter and recognize the role of shunt resistance.		the magnetic flux density of a circular loop carrying a current 1.	
13- deduce the way to convert the		playlists/view/2844877a-0747-4258-a362- 2ffdf94afea7/en/1	
galvanometer into voltmeter and recognize the role of multiplier resistance.		the magnetic flux density of a circular loop carrying a current 2.	
14- deduce the way to convert the		https://lms.ekb.eg/playlists/view/6df931ea- b313-40a8-9c94-9b04130df83c/en/1	
galvanometer into ohmmeter and measure the resistance of an unknown resistor.		the magnetic force which acts on a straightwireplacedinmagnetic field 1	
		https://lms.ekb.eg/playlists/view/ba08896c- 03f0-4a43-92f7-8aba8e2f6fc7/en/1	
		the magnetic force which acts on a straightwireplacedinmagnetic field 2	

		Some sources in EKB	
Learning outcomes	Discovery	S ✓ Britannica	S ✓ ✓ Britannica
Chapter three:	https://lms.ekb.eg/repository/re- source/28f5ae99-2ba8-4a72-9c52-	https://lms.ekb.eg/playlists/ view/56a7365c-2379-44e3-99c5-db-	https://lms.ekb.eg/playlists/view/89f- 8d57a-49da-4ec8-9466-6e541f1e05db/
Electromagnetic Induction.	4be7acd26e9b/en	6b9ade20dc/en/1	en/1
1-Describe the electromagnetic induction phenomenon from faraday's experiments.	Electric Motors and Generators	transformers	the lenz's rule. the fleming's right hand rule part 2
2-Deduce the factors affecting on the induced electromagnetic force produced in a straight wire.	https://lms.ekb.eg/repository/re- source/c852bd52-8dde-4ee6-81ae- d34eba884e8c/en	https://lms.ekb.eg/playlists/ view/05ca20e4-bf29-465d-be17- 311eedf35641/en/1	https://lms.ekb.eg/playlists/view/ ed26ede7-7a1f-4ba0-a6ee- c56a9c49b820/en/1
3-Deduce the faraday'law.	Transformer1	the lenz's rule.	the lenz>s rule.
4-Apply the lenz's rule.		the fleming's right hand rule part 1	the flemings right hand rule part 3
5-Calculate the induced electromagnetic force		https://lms.ekb.eg/playlists/ view/3ce68c39-8301-4fe4-b20a- d4b20f079dbf/en/1	https://lms.ekb.eg/playlists/view/ ac28e7cc-bfb8-4e07-be4e- 8e5e893d258e/en/1
Produced in a straight wire.		the induced electromagnetic	the electromagnetic induction 1
6- Apply the fleming's right hand rule.		the induced electromagnetic force Produced in a straight	the electromagnetic induction i
7-Deduce the mutual induction between two wires.		wire1.	
8-Deduce the self induction of the coil.		https://lms.ekb.eg/playlists/ view/5200b835-7f19-4aab-b121- 4f3e4df002f1/en/1	https://lms.ekb.eg/playlists/ view/40039636-2dcb-448a-a61c- 78b73ae001e8/en/1
9-Deduce the ways to generate eddy currents			
and their usage identify the decreasing its effect in the electric instruments.		the induced electromagnetic	the electromagnetic induction 2
10-Illustrate the structure of dynamo and its		force Produced in a straight	
idea of work.		wire2.	
Calculate the induced electromagnetic force (instantaneous - maximum – effective –		https://lms.ekb.eg/playlists/ view/281d2609-31a0-4b70-9bb1- efe1ec21c092/en/1	https://lms.ekb.eg/playlists/view/b2a9e- cf3-7935-477a-9649-ee03df2c4bfd/ en/1
average) that produced from the dynamo. 11- Illustrate the structure of motor, its idea of work and its uses.		eddy currents1	the electromagnetic induction 3

		Some sources in EKB	
Learning outcomes	Discovery	S S Britannica	S S Britannica
12- Deduce the relation between the voltage and electric current in two coils of transformer.		https://lms.ekb.eg/playlists/ view/47d95583-6043-47c8-b3a9- d75a59f09258/en/1	https://lms.ekb.eg/playlists/view/ 2c5a4065-c8bd-4c60-8440-4dc- c9c896c38/en/1
13- Deduce the way to increase of efficiency of transformer and calculating		eddy currents2	the electromagnetic induction 4
its value. 14- Illustrate the structure of motor (DC)		https://lms.ekb.eg/playlists/ view/21e7a5dc-706e-4b84-8c29-1e0bf- 0d8e43f/en/1	https://lms.ekb.eg/playlists/view/15640ffc- 6e4c-421d-8dca-d6f0f77f094d/en/1
		self induction coefficient of the coil.	AC generators1.
		https://lms.ekb.eg/playlists/view/2de- 25caa-ccba-4e43-a921-25a8dfbbbf5d/ en/1	https://lms.ekb.eg/playlists/ view/3a91d29e-0116-4cb7-b240-d12f10d- 1d4ec/en/1
		AC generators2.	AC generators3.
		https://lms.ekb.eg/playlists/view/ bc059288-f11c-4556-84a5- 6b469ce43dd0/en/1	https://lms.ekb.eg/playlists/ view/af17e549-ba2f-416d-b93c- 0c06b11e4a40/en/1
		self induction of the coil 1.	self induction of the coil 2.
			https://lms.ekb.eg/playlists/view/ f8454725-6b97-41ea-a315- 0a402551399e/en/1
			the mutual induction between two wires 1.
			https://lms.ekb.eg/playlists/ view/3a41bf85-39d7-484e-96a1- ee56e042a560/en/1
			the mutual induction between two wires 2.

		Some sources in EKB	
Learning outcomes	Discovery	Sy Britannica	S y Britannica
Chantar 4:		https://lms.ekb.eg/playlists/	https://lms.ekb.eg/playlists/view/
Chapter 4 : Alternating current circuts		view/32220a35-3d7d-4bf3-a3b2-ac- 47c46e8c73/en/1	d7d75172-3bc4-4c2c-8725-d2cf- 60185cbb/en/1
1- compare between alternating current and direct current.			
2- illustrate by drawing the structure of Hot wire		capacitive reactance	capacitive reactance
ammeter and its idea of work.		https://lms.ekb.eg/playlists/ view/85afc251-141f-418b-8371- 1f735f0b2f88/en/1	https://lms.ekb.eg/playlists/ view/217add95-769a-4269-bff7- d60a85ee9823/en/1
3-Explain the disadvantages of hot wire ammeter and how to overcome the defects.		TIT OSTODZIOO/ETI/ T	000003ee3023/ei// i
4- compare between the phase angle in R-circuit and L-circuit		Capacitors in AC circuits and DC circuits 2	Capacitors in AC circuits and DC circuits 2
5- Identify the relation between the current and the voltage in L-circuit.		https://lms.ekb.eg/playlists/ view/845ea515-9ebf-4e8f-94f6- b2c25d6151b0/en/1	https://lms.ekb.eg/playlists/view/1839f- cb9-e39c-436a-a7c0-5bfd16533002/ ?en/1
6- calculate the impedance of the alternating circuits.		the inductive reactance for group of coils which are connected in	the inductive for group of coils which are connected in series and
7- calculate the inductive reactance for group of		series and parallel connection 1	parallel connection 2
coils which are connected in series and parallel connection.		https://lms.ekb.eg/playlists/view/5b- 9c2d0b-b2aa-48a1-8e91-111de11df3d7/ en/1	https://lms.ekb.eg/playlists/view/ add58308-2921-410a-8696-427d0f- cd7140/en/1
8- calculate the capacitive reactance for group of			
capacitors which are connected in series and parallel connection.		the inductive reactance for group of coils	the inductive for group of coils
9-Identify the structure of oscillating circuit .		https://lms.ekb.eg/playlists/ view/8bd56d82-480d-4acd-b77b-b75d-	https://lms.ekb.eg/playlists/ view/86d2bd1f-3889-44f7-8202-
10-calculate the frequency of tuning circuit and		8e30de09/en/1	69b4f668b0db/en/1
the uses of it.		alternating current 1.	alternating current 2.

		Some sources in EKB	
Learning outcomes	Discovery	Sy Britannica	S y Britannica
Chapter 5: Wave particle duality 1-illusrate the concept of black body radiation.		https://lms.ekb.eg/playlists/view/ acac9337-15b8-4f46-bd8a-aa261e- 4c5da1/en/1	https://lms.ekb.eg/playlists/ view/3fa99b2d-5373-4cbf-a330- afca1e893df4/en/1
2- Explain the thermoionic effect and the photoelectric effect.		the compton effect.the photon's properties	the compton effect. the photon's properties
3-Explain the compton effect.4- Deduce the photon's properties.		https://lms.ekb.eg/playlists/ view/51a40a4c-cf62-4dc2-a21f- 57c0fb29979b/en/1	https://lms.ekb.eg/playlists/ view/61a8a57c-2719-400d- 9795-de7999790901/en/1
5- identify the relation between the wavelength of photon and its momentum.		Radiation of black body 1	Radiation of black body 2
6- explain the wave particle duality.			
7-compare between the electron microscope			
And optical nicroscope.			

		Some s	ources in EKB	
Learning outcomes	Designmate	Discovery	SS Britannica	Sy Britannica
Chapter 6 : Atomic spectra	http://ekb-london-nlb- 7c59b5b79d480d8b.elb.eu-west-2. amazonaws.com/contentview.htm- l?cname=EGY-208-MEG-MN-949-S 07-123-1219&topicid=3000463&lan- gid=en,ar&ctmid=011	https://lms.ekb.eg/re- pository/resource/55fd- 2f8c-3b02-4e3f-ae2b-f86ff2707bcc/ en		
1-Identify the Bohr's model.	Properties of	Emission and Absorption		
2-Identify the line spectrum of the		Spectra		
hydrogen gas.	http://ekb-london-nlb- 7c59b5b79d480d8b.elb.eu-west-2.	https://lms.ekb.eg/playlists/ view/bef9dd20-7e6c-4d1b-b3df-		
3-Explain the idea of work for the spectrometer and compare between the types of spectrum.	amazonaws.com/contentview.htm- l?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3000567&lan- gid=en,ar&ctmid=011	a7677c31e9b9/en/1?options=- JXjsJHgQvWyCWi6yW6HBo- ko0hZb%252FZfuaXC53lpb- mx612kWF3LxVKjeUSF7A2RP-		
4-Recognize the concept of X-rays and its properties.		DXULvfQfqur1cPVTtssEaNs9p- c%252BoajXWjbTVaRpXY- bXVuUdI7oSIOAbHHZfjMxwrRo		
5- Identify the applications of X-rays.	Prism Spectrometer	X-Rays Applications		
	http://ekb-london-nlb- 7c59b5b79d480d8b.elb.eu-west-2. amazonaws.com/contentview.htm- l?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=2000131&lan- gid=en,ar&ctmid=011			
	Hydrogen spectrum			

	Some sources in EKB		
Learning outcomes	Designmate	Discovery	S y Britannica
Chapter 7: Laser 1-compare between spontaneous emission and stimulated emission explain the idea of work and deduce	http://ekb-london-nlb- 7c59b5b79d480d8b.elb.eu-west-2. amazonaws.com/contentview.html?c- name=EGY-208-MEG-MN-945-SS-123-0 718&topicid=3001074&langid=en,ar&ct- mid=011	https://lms.ekb.eg/repository/re- source/6eaeeb4d-96c1-4959-bb94- 2d67848b6cfe/en	https://lms.ekb.eg/playlists/view/dda8b2bf-46f2-4d38-b915-0cd0ae-7cd832/en/9?options=JXJsJHgQvWy-CWi6yW6HBoko0hZb%252FZfuaX-C53lpbmx612kWF3LxVKjeUSF7A2RP-DXBXRFVOciP%252BnkAXMPSvXn-IAPxnSa0ECs3BOLwUrEKbLrdA9C4Ds-g%252F%252BnG96GdGOFCt
its properties.2- Identify the components of laser and its applications.3- Identify the components of (He-Ne)	Applications 1 http://ekb-london-nlb- 7c59b5b79d480d8b.elb.eu-west-2. amazonaws.com/contentview.html?c- name=EGY-208-MEG-MN-945-SS-123-0	Laser light https://lms.ekb.eg/repository/re- source/243a75b7-a735-459c-8bd1- 74d96b8db53b/en	He-Ne laser
Laser device by using the its digram.	718&topicid=3001072&langid=en,ar&ct-mid=011 Applications 2	Sapphires and Lasers	

Learning outcomes	Designmate	Discovery	SS Britannica
Chapter 8: Modern Electronics	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama- zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3000596&langid=en,ar&ctmid=011	https://lms.ekb.eg/repository/ resource/09fca791-2811-47fc-af59- 3001911c0121/en	
	transistor	Electronic Signs	
1-Identify the pure semiconductor crystal and rising its conductivity.	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama-zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3000394&langid=en,ar&ctmid=011		
2- Identify the structure of the pn			
junction (diode).	Not gate		
3- Identify the structure of the transistor , its types and the usage.	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama- zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3000013&langid=en,ar&ctmid=011		
4- Identify the logic gates.	12-123-1119&topiciu-3000013&tatigiu-ett,at&ctitiiu-011		
	AND gate		
	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama-zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3000776&langid=en,ar&ctmid=011		
	semiconductors		
	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama-zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3001208&langid=en,ar&ctmid=011		
	pn-junction part 1		
	http://ekb-london-nlb-7c59b5b79d480d8b.elb.eu-west-2.ama-zonaws.com/contentview.html?cname=EGY-208-MEG-MN-949-S 12-123-1119&topicid=3001228&langid=en,ar&ctmid=011		
	pn-junction part 2		