رقم المادة: ٢/ E /٦٠١٣ دمــــج/ ضعيف يصر عدد الصفحات (١٣ صفحة) + الغلاف الخارجي + عدد ٤ صفحات مسودة وفقد أية ورقة من الكراسة يعتبر مسئولية الطالب ## جمهورية مصر العربية وزارة التربية والتعليم والتعليم الفنى امتحان شهادة إتمام الدراسة الثانوية العامة لطلاب الدمج التعليمي المادة: الرياضيات التطبيقية (ديناميكا بالإنجليزية) (دمج ضعيف بصر) زمن الإجابة: ساعتان مجموع الدرجات (الإجابة في نفس كراسة الأسئلة) الدور الأول ٢٠٢٢ م | ी कार्यकृति है। है। है। है। है। | هراي که کديم کيا کي کي | સિવિસિસિસિસિસિસિસ | (al alking a king | |---------------------------------|---------------------------|-------------------|------------------------------| | قيع
مراجع
السوال | فو
مقدر
السوال ــــ | الدرجة | | | | 385663325884538538344453 | | | | | | | identila P eliperagii | | | | | Y | | | | | 1 | | | | | | | | | | 1 | | | | · | Y | | | | | A ii | | | | - | | | | | | | | | | | لنجرع | رقم الراقبة مجموع الدرجات بالحروف : المصنباءات المراجعين : ## رقم المراقبة وزارة التربية والتعليم والتعليم الفني جممورية مصر العريبة امتحان شهادة إنمام الدراسة الثانوية العامة لطلاب الدمج التعليمي المادة الرياضيات التطبيقية (ديناميكا بالإنجليرية) (دمج ضعيف بصر) (الأجابة في نفس كراسة الأسبلة) الدور الأول ٢٠٢٢م اسم الطالب رياعيًا / الحافظة / رقتم الحلوس / > الإسم التوهيع توقيع الملاحظين بصحة البيانات ومطآبقة عدد أوراق كراسة الإجابة عند استلامها من الطالب Section of the second s | (دمج . ضعیف بصر) | Arab Republic of Egypt | (۲۰۱۳) E (۲۰۱۳) | |--|---|---| | General Secondary Edu | Ministry of Education
scation Certificate Examinat | ion – First Session 2022 | | dynamics | [Third Year Secondary] | Time: 2 Hours | | (الإجابة في نفس كراسة الأسئلة) | 4.4 | ۱ me: 2 mours الديناميكا (بالإنجليزية) الدور الأول ٢ | | (الأسئلة في ثلاثة عشر صفحة) | | يسمح باستخدام الآلة الحاسبة | | Calculator is allowed | | | | First: Choose the correct a | answer from those given | | | (1) If the velocity of a part | icle is determined by the re | elation $v = x^2 - 3$, where | | $\ \vec{v}\ $ is in (m/sec), $\ \vec{x}\ $ | is in meter, then when $x=$ | 2m. the acceleration | | of this particle a = | m/s ² | | | a 4b 3 | © 1 | d zero | (2) If a body of mass 17 kg. | moves under the action of | The force $\overrightarrow{F} = 8\overrightarrow{\imath} + 15\overrightarrow{\imath}$ | | | on, then the magnitude of | | | equals $$ m/s ² | | the acceleration | | | | | | (a) zero (b) | 1 © 2 | (d) 3 | <u> </u> | | | | * | *((بقية الأسئلة فى الصفحة الثانية))* | | | If a for | ce of ma | gnitude 1 | 70 Newt | on acts of | n a body | of mass 5 | kg, in the | |-----------|------------|--------------|----------------------|--------------------------|----------------------|-------------------|--------------------------| | | | | | to change | | | | | | | | 1, | | | | | | ν_1 – | 13 111/860 | v_2 , t | $men v_2 =$ | = | m/sec | ; | | | (a) | 13 | (b) | 17 | (c) | 15 | (d) | 25 | | | ··· | | | | | | | | | | | | . | $= 6\overline{\imath} -$ | | from th | e point A | (-1,2) to t | the point | | here $\vec{\iota}$, | \vec{j} are ort | | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} , wo | \vec{j} are ort | hogonal u | | from th | e point A | (-1,2) to to | the point one by thi | $B(3,4)$, W^{\dagger} | here \vec{l} ,wo | \vec{j} are ort | hogonal u | | صر) | (دمج . ضعيف بد | | -٣- | (| ۲۰۱۱) E / ۲ / أول | <u>ځ ("</u> | |-----|--------------------|---|---------------|-------------|--------------------|--------------| | 5) | A particle mo | oves in a straigh | it line, from | rest from | a fixed point | | | | | measure of its v
r = (1 - cost)
vector $\vec{s} = $ | | | _ | by | | | <u>a</u> | t-cost | (b) | t + c | rost | | | | © | t-sint | (d) | t + s | int | ce acts on a body | | | - | | | i1 | it is equal to 35. | $28 \text{ N} \cdot \text{s during } \frac{1}{25}$ | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | $28 \text{ N} \cdot \text{s during } \frac{1}{25}$ | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | $28 \text{ N} \cdot \text{s during } \frac{1}{25}$ | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | $28 \text{ N} \cdot \text{s during } \frac{1}{25}$ | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | $28 \text{ N} \cdot \text{s during } \frac{1}{25}$ | second, then | the magni | tude of this for | rce | | i1 | it is equal to 35. | 28 N . s during $\frac{1}{25}$ | © 882 Kg | g.wt d | tude of this for | rce | | i1 | it is equal to 35. | 28 N . s during $\frac{1}{25}$ | second, then | g.wt d | tude of this for | rce | | It o h | | | | | | | / Y / E (\ \ \ \ | |--|---|---|--|------------|------------|-----------------------|-----------------------| | surfac | e, then th | e sum | fall down of its kine ling = | etic and p | otential e | m. above
nergy aft | the grounder 1 second | | a | 196 | b | 98 | C | 49 | \bigcirc | 20 | | | | · | e opposite | - | | | | | | | The sm
moves f
tension | all pulley
rom rest,
in the stri | is smoot
if the ma
ng = 30 N | h, the syst
gnitude of | the | N | | m 2n | | The sm
moves f
tension | all pulley
rom rest,
in the stri | is smoot
if the ma
ng = 30 N | h, the syst
gnitude of
N, | the | N
15 | (d) | m 2n | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | The sm
moves f
tension
then the | all pulley
from rest,
in the stri | is smoot
if the ma
ng = 30 1
on the pu | h, the syst
gnitude of
N,
ılley = | the | | (d) | | | ضعیف بصر) | (دمج، | | | <u>-</u> ٦_ | | أول | تابع (۲۰۱۳) ۲/E | |-----------|----------------|----------------------|------------------------|---------------|-------------------------------------|------------|-----------------| | 28 m | /sec and s | stopped a | after 10 se | econd, th | al ground
en the kin
equals — | with inite | tial velocity | | a | $\frac{1}{10}$ | (b) | $\frac{2}{7}$ | C | $\frac{5}{18}$ | <u>d</u> | 1 | | - | - | | | | | | | when i | tional as th | ne square
75 m/se | of its veloce of its m | ocity, if the | he resistand
velocity ed | e equal 3 | 324 kg.wt, | | (a) | 1250 | b | 1500 | C | 1750 | <u>(d)</u> | 2000 | مفحة السابعة | | - | | | | body is projected from its projection imum height of the 4.9 b | vertically u is given by body = | prizontal by hed the bott C 490 apwards and the relation | angle of site of the properties properti | 980 at x meter after | |--|---------------------------------|--|---|---| | body is projected from its projection imum height of the | vertically u is given by body = | ipwards and the relation | d its height $x = 39.2t$ neter. | 980 If x meter after $t - 4.9t^2$, then | | body is projected from its projection imum height of the | vertically u is given by body = | ipwards and the relation | d its height $n = 39.2t$ neter. | at x meter after $t - 4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | from its projection imum height of the | is given by
e body = | the relation | n x = 39.2t meter. | $t-4.9t^2$, then | | | | | | 78 <i>1</i> . | | | | | d | 70.4 | | | | | · | * _ | • | | | | | *((a.a | عى الصقحة الثار | "((بقية الأسئلة | k | | | | منة))* | في الصفحة الثامنة))* | ((بقية الأسئلة في الصفحة الثامنة))* | *((بقية الأسئلة في الصفحة الثامنة))* | | سعیف بصر)_ | | | | | <u> </u> | | 1/Y/E(%.18 | | |----------------|---------------|-------------------------|-----------------------------|--------------|------------------------------|------------------------|--|--| | plane
force | e, inclined t | to the hor
he direct | rizontal by
ion of the l | angle of the | f measure 3
ne greatest s | s² up a sr
0°, unde | nooth inclined
or the effect o
wards, then the | f a | | (a) | 790 | b | 300 | © | 190 | <u>d</u> | 490 | | | | | | | | | | | · · · · · · | | | car of ma | | | | velocity 9 | 0 km/h | , then its | | | | | | | | velocity 9
25000 | 0 km/h | , then its
50000 | | | mome | entum = . | | Kg.m | n/s | | | | | | mome | entum = . | | Kg.m | n/s | | | | —————————————————————————————————————— | | mome | entum = . | | Kg.m | n/s | | | | | | mome | entum = . | | Kg.m | n/s | | | | | | mome | entum = . | (b) | Kg.m | o/s | 25000 | | | | | (17) If a bad- | (دمز | | _9_ | | أول | تابع (۲۰۱۳) ۲ / E (۲۰۱۳) | |--|--|---|-------------|---------------------------|-----------------|--------------------------| | $\frac{\text{displacen}}{\overline{s}} = t^2 \overline{\iota}$ | ment vector $\vec{l} + 5t \vec{j}$, w | der the effect \overline{s} as a function \overline{t} , \overline{f} and \overline{t} at \overline{t} , \overline{f} and \overline{t} , \overline{t} is \overline{t} . | ion of ting | me is giver
orthogonal | by the unit vec | relation | | | | c the power ϵ | | | | | | a 2 w | ratt (l | 21 watt | © | 5 watt | d | 28 watt | (18) The Kin | | of a projectil | e of mas | ss 1 kg mov | ves with | velocity | | | c equals | Joule | | | | | | 30 m/sec | e equals | | © | 1450 | <u>d</u> | 450 | | 30 m/sec | | | © | 1450 | <u>d</u> | 450 | | 30 m/sec | | | © | 1450 | <u>d</u> | 450 | | 30 m/sec | | | © | 1450 | (d) | 450 | | 30 m/sec | | | © | 1450 | <u>d</u> | 450 | | 30 m/sec | | | © | 1450 | (d) | 450 | | 30 m/sec | | | © | 1450 | (d) | 450 | | (دمج . ضعیف بصر) | -1 | نابع (۲۰۱۳) E / ۲ / اول | |---|--|--| | Second: Answer the following | questions: - | | | (19) A car moves in a straig | ght line from rest from | m fixed point, | | its algebraic measure of the relation $v = (8)$ | of its velocity after tint $t-t^2$), where $\ \overline{v}\ $ | me t second is given is in m/s, t is in second | | then at $t = 3 sec$ find ϵ | each of the acceleration | on and the displacement. | · | عشر))* | (بقية الأسئلة في الصفحة الحادية |)* | - | (دمج . ضعیف بصر) | -11- | تابع (۲۰۱۳) E / ۲ / اول | |---|--------------------------|----------------------------------| | (20) A sphere of mass 300 gm falls fill liquid surface and penetrates it was a distance of 9.6m in 2 seconds. Calculate magnitude of the impu | vith a uniform velocity | ers on a viscous
y, to travel | · | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | 4/(. * | Constanta Costa Co. | | | عصه التالية حمل))" | *((بقية الأسئلة في الصا | | | | | | | | | | | (دمج . ضعیف بصر) | -17- | ابع (۲۰۱۳) E / ۲/ أول | |---|---|--------------------------| | (21) A body of mass 63 kg with a rope that move in the string 105 kg.v acceleration of the bo | e the box vertically, if the vt., then find magnitude a | magnitude of the tension | *((. | بقية الأسئلة في الصفحة الثالثة عشر |))* | | | | | | | | | | (دمج . ضعیف بصر) | -17- | تابع E (۲۰۱۳) کا / اول | |---|--|--------------------------| | (22) A car of mass 3 tons a horizontal road with not the road resistance to | and the power of its engine in naximum velocity 50 m/sec its motion per each ton of it | . Find the magnitude of | | | | | | | | | | | | | | | | | | : | | | | | | · | · | | | | | | | **((انتهت الأسئلة))** | | | | | | | THE PROPERTY OF THE STATE TH | |--| 4905400.Vojne | |---------------| _ | _ | | | | _ | | _ | | - | | - | | - | | - | | - | | - | | - | | | | THE TOTAL SALES AND ADDRESS OF | |---| |