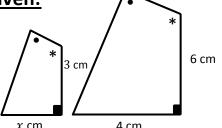
Model test in Geometry For the 1st secondary stage – First term 2018 / 2019 Merge students

Answer the following questions


First Question: Choose the correct answer from those given:

In the opposite figure:

If the two polygons are similar ,then $x = \dots cm$

- b) 3
- (c) 4

(2) If k is the factor of similarity for the two polygons P_1 , P_2 and $P_1 \equiv P_2$, then

(a)
$$0 < k < 1$$

(b)
$$k=1$$

(c)
$$0 < k$$

(3) If \triangle $ABC \sim \triangle$ XYZ and m ($\angle Y$) = 30° , m ($\angle A$) = 70° ,then m ($\angle C$) =°

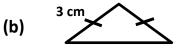
(a) 70

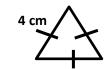
(b) 80


- (c) 100
- (4) If the ratio between the perimeters of two similar polygons is 1 : 4 ,then the ratio between their areas is
 - (a) 1:2

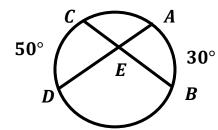
(b) 1:4

(c) 1:16


(c)

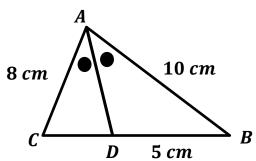

(5) The triangle

is similar to the triangle



Second Question: Complete the following:

- (3) If the power of point A with respect to circle M equals zero ,then the point A lies the circle .


(4) In the following figure:

$$m(\angle AEB) = \dots ^{\circ}$$

(5) In the following figure:

$$DC = \dots cm$$

Third Question: Match from column A with the suitable from column B

Colum (A)

Colum (A)			
(1)	In the opposite figure: $\frac{BD}{DC} = \dots$ C D	B	
(2)	In the following figure: $\frac{BD}{DC} = \dots$ * * * * * * * * * * * * * * * * * * *		
(3)	In the following figure: $(AD)^2 = \dots$	■	
(4)	In the following figure: $(AB)^2 = \dots$	B	
(5)	In the following figure: $m(\angle E) = \dots$	•	

Column (B)

	• •
•	$BD \times BC$
•	$\frac{AB}{AC}$
	$\frac{BE}{EA}$
•	$\frac{\left(m\left(\widetilde{AB}\right)-m\left(\widetilde{DC}\right)\right)}{2}$
•	$BD \times BC$

Fourth Question: Complete to find the value of x in each of the following:

(1) In the following figure:

$$EA \times EB = EC \times \dots \dots$$

 $3 \times 4 = 2 \times \dots \dots$
 $x = \dots \dots cm$

(2) In the following figure:

$$(AB)^2 = BD \times \dots \dots$$
$$(AB)^2 = 4 \times \dots \dots$$
$$x = \dots \dots \dots \dots$$

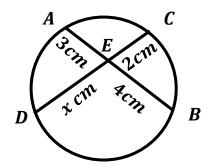
(3) In the following figure:

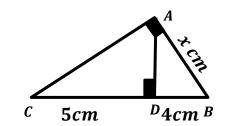
$$\frac{5}{x} = \frac{10}{\dots}$$

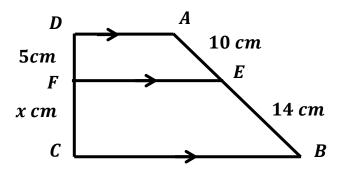
$$x = \frac{5 \times \dots}{10}$$

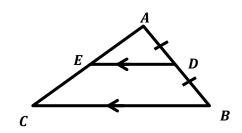
$$x = \dots \quad cm$$

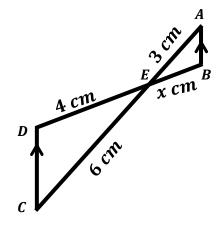
(4) In the following figure:


If
$$\frac{area\ of\ \triangle\ ADE}{area\ of\ \triangle\ ABC} = x$$
, then $\frac{area\ of\ \triangle\ ADE}{area\ of\ \triangle\ ABC} = \left(\frac{AD}{2\}\right)^2 = \frac{.....}{.....}$ $x =$ cm


(5) In the following figure:


$$\frac{AE}{EC} = \frac{x}{\dots x}$$


$$x = \frac{3 \times \dots }{6}$$


$$x = \dots cm$$

