If $x = \sec y$, where $y \in]\frac{\pi}{2}$, π [, then $\frac{dx}{dy} = \dots$

- e
- - e
- 1
- -1

If
$$\lim_{X \to 0} \frac{\ln(x+1)^{\sqrt{k}}}{X} = 4$$
, then k =...........

- 16
- 4
- 8
- 2

If $f(x) = \int \frac{1 - (\ln x)^2}{x} dx$, where f(1) = 0, then $f(e) = \dots$

If $y = \sin 3x$, then the differential of $y = \dots$

• 3cos3*x* d*x*

$$\int \frac{9}{2} \sqrt{x} \ln x \ dx = \dots + c \text{ where } c \text{ is constant}$$

If the function f is differentiable twice on the interval[-1 , 1] where $f^{(x)}$ is increasing on]-1 , 0[and $f^{(x)}$ is decreasing on]0 , 1[,

then the statement which must be true from the following is......

- (0, f(0)) is an inflection point.
- f(0) is a local maximum value.
- The function f is increasing on]0 , 1[
- The function f is decreasing on]0 , 1[

If
$$f(\frac{1}{2}x) = |x|^3$$
, then $f^{(1)}$ (-1) =......

• 48

• 14

• 1

• -48

If
$$y = f(X)$$
 where $y = \sqrt[3]{n^2 + 7}$, $6n^2x + n = 1$,

then the normal to the curve of the function at a point lies on it which its X - coordinate equals zero is

If
$$y = e^x \sec x$$
, then $\frac{dy}{dx} = \dots$ at $x = z = e^x \cot x$

The function $f:[-3,-1] \to \mathbb{R}$ where $f(x) = x + \frac{a}{x}$. if the absolute maximum value of f equals -2 and f is increasing on the interval [-3,-1[, then a =.......

The slope of the tangent to the curve $y = 5^x \log_5(x+1)$ at x = 0 equals......

If $y \times \log_{(x^3)} e = 1$ where x > 1, then $\frac{dy}{dx} = \dots$ at x = 3

If: a , b \in] 0 , $\frac{\pi}{2}[\,$ then:

If y > 0 then the point lies on the curve $y^2 = 8x$ at which $\frac{dy}{dx} = \frac{dx}{dy}$ is......

If
$$y = a e^{bx}$$
 and $\frac{d^2y}{dx^2} = y$, then $b^2 = ...$

The maximum value of the function $f(X) = \sin X + \cos X$ in the interval 0, $\frac{\pi}{2}$ is

If sin X cos y = $\frac{1}{2}$ where X and y are the measures of two acute angles, then $\frac{dy}{dx}$ = at $x = \frac{\pi}{4}$

- 1
- -1
- 0
- $\frac{1}{2}$

If
$$\frac{dz}{d\theta} = \cos 2\theta$$
, $\frac{dy}{d\theta} = \sin 2\theta$,

then $\frac{d^2y}{dz^2}$ =....at $x = \frac{\pi}{8}$

- 4√2
- 4
- 2√2
- 2

In the opposite figure:

A candle is placed at 3 cm from a wooden block of height L cm, the wooden block is at a distance 6 cm from a vertical wall as shown in the figure.

if the length of the candle (x) decreasing by rate 3 cm/hr.

then the rate of change of the length of the shadow of block (y) on the wall is......cm/hr

• 6
• -6
• -3
• 3

In the opposite figure:

If the point A(x,y) is moving on the straight line whose equation y = -2x + 4

where $0 \le X \le 1$, the point B is the projection of A on the X-axis and c(-2, 0),

then the smallest area of \triangle ABC is...... square unite

- 3
- 4
- 2
- 5

If the equation of the tangent to the curve $y = -\ln x$ at the point (a, b) which lies on the curve is y = mx,

The opposite figure representing the curve $e^{x+y} = 3x-2$,

and the tangent to the curve at the point A(1, -1) intersecting the axes of coordinates $\overrightarrow{XX'}$, $\overrightarrow{YY'}$ at the two points B and C respectively then A divides \overrightarrow{BC} by ratio......

- 1:2 internally
- 2:1 internally
- 1:2 externally
- 2:1 externally

The opposite figure represents the curves of the two functions g, k on the interval [A, B].

If f is a function where $f(x) = (g \circ k)(x)$ then the correct statement from the following is.........

- The function f is decreasing on the interval] A , B [
- The function f is increasing on the interval] A , B [
- The function f is increasing on the interval] A, C [only
- The function f is decreasing on the interval] A , C [only

In the interval] 0 , 1 [the function g is differentiable twice and g''(x) < 0,

if f is function where f(x) = g(x) + g(1 - x) then the correct statement from the following is..........

- f is decreasing on] $\frac{1}{2}$, 1 [
- f is decreasing on] 0 , 1 [
- f is increasing on] 0 , 1 [
- f is increasing on] $\frac{1}{2}$, 1 [