Algebra & Analytic solid Geometry الجبر والهندسة الفراغية أجب عن الأسئلة التالية:

1.	Which of the following could be equal	يم التالية يمكن أن تسا <i>وي</i>		.1	
	to ${}^{n}\mathbf{p}_{3} = \dots$		ہ ہے۔		
a	40	٤٠	Í		
b	140	15.	(Ē)		
С	210	۲۱.	(I)		
d	280	۲۸.	(c)		

2.	If $\vec{A} = (-1, 4, 3)$, $\vec{B} = (2, 2, 1)$, then the component of the vector \vec{A} in the direction of the vector \vec{B} equals	کان ا = (-۱، ۶، ۳)، = (۲، ۲، ۱) فإن مرکبة	بُ المتج	۲.	**
a	$\frac{9}{\sqrt{26}}$	<u> १</u> <u>२</u> २/	Í		
(b)	$\frac{3}{\sqrt{26}}$	<u> </u>	(J·)		
C	3	٣	(ج)		
d	1	,	٦		

3.	If the two straight lines: $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{4},$ $\frac{x}{3} = \frac{y-2}{4} = \frac{z-1}{k}$ are perpendicular, then $k = \dots$	ن المستقيمان: $ \frac{w}{\tau} = \frac{v - v}{\xi} = \frac{3 - v}{\xi} $ $ \frac{1 - \xi}{\tau} = \frac{v + v}{\tau} = \frac{1 - v}{\xi} $ دين فإن: ك=	۔ <u>س</u> -	.٣	**
a	$\frac{-19}{4}$	<u>\ \ 9 - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	Í		
(b)	$\frac{-17}{4}$	<u>\\ \tau - \\ \xi</u>	(j.		
C	- 4.5	٤,٥-	<u></u>		
d	4.5	٤,٥	<u>_</u>		

4.	Find the equation of the straight line passes through the origin point and cut Perpendicularly the straight line: $\vec{r} = (3, 1, 4) + k(2, 1, 3)$	أوجد معادلة المستقيم المار بنقطة الأصل ويقطع المستقيم:	. ٤

5.	The length of the diameter of the sphere whose equation: $x^2 + y^2 + Z^2 - 6x + 8y - 4z + 4 = 0$ equals length unit	قطر الكرة التى معادلتها: $+ \omega^7 + 3^7 - 7 \omega + \lambda \omega - 33 + 3 = 0$.0	
	equals length unit	ى وحدة طول	يساوع		
a	5	٥	Í		
b	10	١.	<u>(-</u> j)		
C	15	10	<u></u>		
d	20	۲.	(1)		

6.	If: $Z = e^{\theta i}$, then find the modulus and the amplitude of the complex number $\frac{1+z}{1-z}$	اذا كان ع $=$ هه $^{0^{-}}$ فأوجد المقياس والسعة للعدد $\frac{1+3}{1-3}$.

7.	The number of ways of the selection of four different letters at least together From the elements of the set { a , b , c , d , e } is	لرق اختيار أربعة أحرف على الأقل مختلفة معاً من عناصر المجموعة ، ب ، ح ، و ، ه } هي		.٧	
a	${}^{5}C_{4} + {}^{5}C_{5}$	$_{\circ}\upsilon^{\circ}+_{_{\imath}}\upsilon^{\circ}$	Í		
б	5 c ₄ × 5 c ₅	$_{\circ}\upsilon^{\circ} imes_{_{\imath}}\upsilon^{\circ}$	<u>(j.)</u>		
C	$^{5}p_{4} + ^{5}p_{5}$	°ل ۽ + °ل °	(1)		
d	5 p ₄ × 5 p ₅	°ل،×°ل،	(1)		
••••					

	8.	Discuss the possibility of solving of the following linear equations and find the solution if exist: $ \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} $	ابحث امكانية حل المعادلات الآتية وأوجد الحل إن وجد : (۱۱۱) [] [] [] [] [] [] [] [] [] [٠.٨	***
•					
	••••				
	••••				
	••••				

9.	The volume of the cuboid in which 3 adjacent edges on it are represented By $\vec{A} = (3, -4, 0), \vec{B} = (0, -4, 3), \vec{C} = (0, 0, 5)$ equals cubic unit	متوازي السطوح الذي فيه ثلاثة أحرف رة يمثلهما (=(٣، -٤، ،)، (٠، -٤، ٣)، ج = (٠، ، ، ٥)	_ ب=ر	٩.	**	
a	12	١٢	1			
(b)	50	0,	(j)			
С	60	٦,	<u>-</u>			
<u>d</u>	125	170	(2)			

10.	If x -axis cuts the sphere $(x-2)^2 + (y+3)^2 + (z-1)^2 = 14$ in the two points A and B then the length of $\overline{AB} = \dots$ length unit	ع محور السينات الكرة : ٢)٢ + (ص + ٣)٢ + (ع - ١)٢ = ١٤ قطتين ١ ، ب. فإن طول = وحدة طول	(س - في الن	.).		
a	2	۲	Í			
(b)	$\sqrt{14}$	1 5/	<u>(-</u> j)			
C	4	٤	<u>-</u>			
<u>d</u>	$\sqrt{28}$	71	2			

if the ratio between the two consecutive middle terms equal $\frac{-2}{3}$, then y : x =	13 اذا كانت 17 إذا كانت 18 أذا كانت 18 أن المحدين الأوسطين على 18 als $\frac{7}{7}$ فإن 18 فإن 18 فإن 18 فارن 18					
9:4	٤:٩	Í				
b 4:9	٩ : ٤	<u>(-</u>)				
© 3:2	۲ : ۳	<u>÷</u>				
② 2:3	٣:٢	2				

12.	The number of ways of distribution of eight prices equally among 4 students equals	لمرق توزیع ثمانیة جوائز بالتساوي على ٤ تساوي		.17	
a	35	٣٥	(Î)		
(b)	56	٥٦	(J)		
C	2520	707.	<u></u>		
d	40320	٤٠٣٢،	٦		
(d) 40320 (e, ry, (a) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d					

13. without expanding the determinate, prove that	۱۳. المحدد أثبت أن :
$\begin{vmatrix} a & b & c \\ b & a+b & a+b+c \\ b & a & c \\ a & b & zero \\ b & a+b & b \\ c & a+b+c & a+b \end{vmatrix} = zero$	بدون فك المحدد البيت ان : ا
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

14.	If a plane cuts the axes at the points A,B and C and the point (m, n, f) is the centroid point of \triangle ABC prove that the equation of the plane is: $\frac{x}{m} + \frac{y}{n} + \frac{z}{f} = 3$	النقط ۱ ، ب ، ج ، وكانت النقطة (٢ ، ١ ، و) هي نقطة تقاطع متوسطات المثلث ١ بج . اثبت أن معادلة المستوى هي:	.1 ٤	•
		$\mathbf{r} = \frac{\varepsilon}{\varrho} + \frac{\omega}{\varrho} + \frac{\omega}{\varrho}$		

15.	If 1, ω , ω^2 are the cubic roots of one ,then the solution set of the equation $X^3 = 8$ in C is	إذا كان ω ، ω^{γ} هي الجذور التكعيبية الغير حقيقية للواحد الصحيح فإن مجموعة حل المعادلة $\omega^{\gamma}=\Lambda$ في ω هي	•	
a	{ 2 }	{ 7 }		
(b)	$\{2,2\omega,4\omega^2\}$	{ * \omega \cdot \		
C	$\{2,2\omega,2\omega^2\}$	{ τω τ ω τ ω τ ω τ ω τ ω τ ω τ }		
<u>d</u>	$\{ 8, 8+\omega, 8+\omega^2 \}$	$\{ ^{Y} \omega + A \cdot \omega + A \cdot A \} \bigcirc$		

16.	If the expansion of $(x + \frac{1}{x^2})^9$	في مفكوك $\left(\frac{1}{m} + \frac{1}{m}\right)$.17	
	Answer one of the following questions only:	أجب عن أحد المطلوبين التاليين فقط:		
	(1) find the order and the	(١) أوجد رتبة وقيمة الحد الخالي		
	value of the term free of x (2) find the value of x in	من س.		
	which the sum of the two middle terms in this expansion	(۲) أوجد قيمة س التي تجعل ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		
	equals zero	مجموع الحدين الأوسطين في المفكوك يساوي صفر.		
		المعدوت يعدوني تعمر .		

17. $\begin{vmatrix} ab & a & \frac{1}{c} \\ ac & c & \frac{1}{b} \\ bc & b & \frac{1}{a} \end{vmatrix} = \dots$	$ = \begin{vmatrix} \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 2 & 2 \\ \frac{1}{2} & 2 & 2 \end{vmatrix} $				
a zero	اً صفر				
(b) bc	ب جـ				
© 1	١ 🚓				
<u>d</u> 2	7 2				

18.	If the two planes: 3x - 6y + 6z - 5 = 0 and x + z - 3 = 0 are intersected Answer only one of the following questions: (1) find the equation of the line intersection of the two planes (2) find the angle between the two planes	إذا تقاطع المستويان : ٣ س - ٦ ص + ٦ ع - ٥ = ٠ ، س + ع - ٣ = ٠ أجب عن أحد المطلوبين التاليين فقط: (١) أوجد معادلة خط تقاطع المستويين. (٢) أوجد قياس الزاوية بين المستويين.	.14	

19.	The two straight lines (xx) , (yy) form the Cartesian plane whose equation is	قيمان س س ، ع ع يكونلن ي الإحداثيات الذي معادلته		.19	
a	x=0	س = صفر	Í		
(b)	y=0	ص = صفر	(j.		
C	z=0	ع = صفر	(ج)		
<u>d</u>	y=2	ص = ۲	(1)		

مع أطيب التمنيات بالتوفيق،،،،،،،